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 [https://trelawney.readthedocs.io/en/latest/?badge=latest][image: MIT License]Trelawney is a general interpretability package that aims at providing a common api to use most of the modern
interpretability methods to shed light on sklearn compatible models (support for Keras and XGBoost are tested).

Trelawney will try to provide you with two kind of explanation when possible:


	global explanation of the model that highlights the most importance features the model uses to make its
predictions globally


	local explanation of the model that will try to shed light on why a specific model made a specific prediction




The Trelawney package is build around:


	
	some model specific explainers that use the inner workings of some types of models to explain them:

	
	LogRegExplainer that uses the weights of the your logistic regression to produce global and local explanations of
your model


	TreeExplainer that uses the path of your tree (single tree model only) to produce explanations of the model










	
	Some model agnostic explainers that should work with all models:

	
	LimeExplainer that uses the Lime [https://github.com/marcotcr/lime] package to create local explanations only (the local nature of Lime prohibits
it from generating global explanations of a model


	ShapExplainer that uses the SHAP [https://github.com/slundberg/shap] package to create local and global explanations of your model


	SurrogateExplainer that creates a general surogate of your model (fitted on the output of your model) using an
explainable model (DecisionTreeClassifier,`LogisticRegression` for now). The explainer will then use the
internals of the surrogate model to explain your black box model as well as informing you on how well the surrogate
model explains the black box one













Quick Tutorial (30s to Trelawney):

Here is an example of how to use a Trelawney explainer

>>> model = LogisticRegression().fit(X, y)
>>> # creating and fiting the explainer
>>> explainer = ShapExplainer()
>>> explainer.fit(model, X, y)
>>> # explaining observation
>>> explanation =  explainer.explain_local(X_expain)
[
    {'var_1': 0.1, 'var_2': -0.07, ...},
    ...
    {'var_1': 0.23, 'var_2': -0.15, ...} ,
]
>>> explanation =  explainer.graph_local_explanation(X_expain.iloc[:1, :])





[image: Local Explanation Graph]
>>> explanation =  explainer.feature_importance(X_expain)
{'var_1': 0.5, 'var_2': 0.2, ...} ,
>>> explanation =  explainer.graph_feature_importance(X_expain)





[image: Local Explanation Graph]



FAQ


Why should I use Trelawney rather than Lime [https://github.com/marcotcr/lime] and SHAP [https://github.com/slundberg/shap]




while you can definitally use the Lime and SHAP packages directly (they will give you more control over how to use their
packages), they are very specialized packages with different APIs, graphs and vocabulary. Trelawnaey offers you a
unified API, representation and vocabulary for all state of the art explanation methods so that you don’t lose time
adapting to each new method but just change a class and Trelawney will adapt to you.




Comming Soon


	Regressor Support (PR welcome)


	Image and text Support (PR welcome)







Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.
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Installation


Stable release

To install trelawney, run this command in your terminal:

$ pip install trelawney





This is the preferred method to install trelawney, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.




From sources

The sources for trelawney can be downloaded from the Github repo [https://github.com/skanderkam/trelawney].

You can either clone the public repository:

$ git clone git://github.com/skanderkam/trelawney





Or download the tarball [https://github.com/skanderkam/trelawney/tarball/master]:

$ curl -OJL https://github.com/skanderkam/trelawney/tarball/master





Once you have a copy of the source, you can install it with:

$ python setup.py install
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trelawney package


Submodules




trelawney.base_explainer module

module that provides the base explainer class from which all future explainers will inherit


	
class trelawney.base_explainer.BaseExplainer

	Bases: abc.ABC

the base explainer class. this is an abstract class so you will need to define some behaviors when implementing your
new explainer. In order to do so, override:


	the fit method that defines how (if needed) the explainer should be fited


	the feature_importance method that extracts the relative importance of each feature on a dataset globally


	the explain_local method that extracts the relative impact of each feature on the final decisionfor every sample
in a dataset





	
explain_filtered_local(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], cols: List[str], n_cols: Optional[int] = None) → List[Dict[str, float]]

	same as explain_local but applying a filter on each explanation on the features






	
explain_local(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], n_cols: Optional[int] = None) → List[Dict[str, float]]

	explains each individual predictions made on x_explain. BEWARE this is usually quite slow on large datasets


	Parameters

	
	x_explain – the samples to explain


	n_cols – the number of columns to limit the explanation to













	
feature_importance(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], n_cols: Optional[int] = None) → Dict[str, float]

	returns a relative importance of each feature on the predictions of the model (the explainer was fitted on) for
x_explain globally. The output will be a dict with the importance for each column/feature in x_explain
(limited to n_cols)

if some importance are negative, this means they are negatively correlated with the output and absolute value
represents the relative importance


	Parameters

	
	x_explain – the dataset to explain on


	n_cols – the maximum number of features to return (ordered by importance)













	
filtered_feature_importance(x_explain: pandas.core.frame.DataFrame, cols: Optional[List[str]], n_cols: Optional[int] = None) → Dict[str, float]

	same as feature_importance but applying a filter first (on the name of the column)






	
fit(model: sklearn.base.BaseEstimator, x_train: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], y_train: pandas.core.frame.DataFrame)

	prepares the explainer by saving all the information it needs and fitting necessary models


	Parameters

	
	model – the TRAINED model the explainer will need to shed light on


	x_train – the dataset the model was trained on originally


	y_train – the target the model was trained on originally













	
graph_feature_importance(x_explain: pandas.core.frame.DataFrame, cols: Optional[List[str]] = None, n_cols: Optional[int] = None, irrelevant_cols: Optional[List[str]] = None)

	




	
graph_local_explanation(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], cols: Optional[List[str]] = None, n_cols: Optional[int] = None, info_values: Union[pandas.core.frame.DataFrame, pandas.core.series.Series, None] = None) → plotly.graph_objs._figure.Figure

	creates a waterfall plotly figure to represent the influance of each feature on the final decision for a single
prediction of the model.

You can filter the columns you want to see in your graph and limit the final number of columns you want to see.
If you choose to do so the filter will be applied first and of those filtered columns at most n_cols will be
kept


	Parameters

	
	x_explain – the example of the model this must be a dataframe with a single ow


	cols – the columns to keep if you want to filter (if None - default) all the columns will be kept


	n_cols – the number of columns to limit the graph to. (if None - default) all the columns will be kept






	Raises

	ValueError – if x_explain doesn’t have the right shape
















trelawney.colors module




trelawney.lime_explainer module


	
class trelawney.lime_explainer.LimeExplainer(class_names: Optional[List[str]] = None, categorical_features: Optional[List[str]] = None)

	Bases: trelawney.base_explainer.BaseExplainer

Lime stands for local interpretable model-agnostic explanations and is a package based on
this article [https://www.arxiv.org/abs/1602.04938]. Lime will explain a single prediction of you model
by crechariotsating a local approximation of your model around said prediction.’sphinx.ext.autodoc’, ‘sphinx.ext.viewcode’]

>>> X = pd.DataFrame([np.array(range(100)), np.random.normal(size=100).tolist()], index=['real', 'fake']).T
>>> y = np.array(range(100)) > 50
>>> # training the base model
>>> model = LogisticRegression().fit(X, y)
>>> # creating and fiting the explainer
>>> explainer = LimeExplainer()
>>> explainer.fit(model, X, y)
<trelawney.lime_explainer.LimeExplainer object at ...>
>>> # explaining observation
>>> explanation =  explainer.explain_local(pd.DataFrame([[5, 0.1]]))[0]
>>> abs(explanation['real']) > abs(explanation['fake'])
True






	
explain_local(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], n_cols: Optional[int] = None) → List[Dict[str, float]]

	explains each individual predictions made on x_explain. BEWARE this is usually quite slow on large datasets


	Parameters

	
	x_explain – the samples to explain


	n_cols – the number of columns to limit the explanation to













	
feature_importance(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], n_cols: Optional[int] = None) → Dict[str, float]

	returns a relative importance of each feature on the predictions of the model (the explainer was fitted on) for
x_explain globally. The output will be a dict with the importance for each column/feature in x_explain
(limited to n_cols)

if some importance are negative, this means they are negatively correlated with the output and absolute value
represents the relative importance


	Parameters

	
	x_explain – the dataset to explain on


	n_cols – the maximum number of features to return (ordered by importance)













	
fit(model: sklearn.base.BaseEstimator, x_train: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], y_train: pandas.core.frame.DataFrame)

	prepares the explainer by saving all the information it needs and fitting necessary models


	Parameters

	
	model – the TRAINED model the explainer will need to shed light on


	x_train – the dataset the model was trained on originally


	y_train – the target the model was trained on originally



















trelawney.logreg_explainer module

Module that provides the LogRegExplainer class base on the BaseExplainer class


	
class trelawney.logreg_explainer.LogRegExplainer(class_names: Optional[List[str]] = None, categorical_features: Optional[List[str]] = None)

	Bases: trelawney.base_explainer.BaseExplainer

The LogRegExplainer class is composed of 3 methods:
- fit: get the right model
- feature_importance (global interpretation)
- graph_odds_ratio (visualisation of the ranking of the features, based on their odds ratio)


	
explain_local(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], n_cols: Optional[int] = None) → List[Dict[str, float]]

	returns local relative importance of features for a specific observation.
:param x_explain: the dataset to explain on
:param n_cols: the maximum number of features to return






	
feature_importance(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], n_cols: Optional[int] = None) → Dict[str, float]

	returns the absolute value (i.e. magnitude) of the coefficient of each feature as a dict.
:param x_explain: the dataset to explain on
:param n_cols: the maximum number of features to return






	
fit(model: sklearn.base.BaseEstimator, x_train: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], y_train: pandas.core.frame.DataFrame)

	prepares the explainer by saving all the information it needs and fitting necessary models


	Parameters

	
	model – the TRAINED model the explainer will need to shed light on


	x_train – the dataset the model was trained on originally


	y_train – the target the model was trained on originally













	
graph_odds_ratio(n_cols: Optional[int] = 10, ascending: bool = False, irrelevant_cols: Optional[List[str]] = None) → pandas.core.frame.DataFrame

	returns a plot of the top k features, based on the magnitude of their odds ratio.
:n_cols: number of features to plot
:ascending: order of the ranking of the magnitude of the coefficients












trelawney.shap_explainer module




trelawney.surrogate_explainer module


	
class trelawney.surrogate_explainer.SurrogateExplainer(surrogate_model: sklearn.base.BaseEstimator, class_names: Optional[List[str]] = None)

	Bases: trelawney.base_explainer.BaseExplainer

A surrogate model is a substitution model used to explain the initial model. Therefore, substitution models are
generally simpler than the initial ones. Here, we use single trees and logistic regressions as surrogates.


	
adequation_score(metric: Union[Callable[[numpy.ndarray, numpy.ndarray], float], str] = 'auto')

	returns an adequation score between the output of the surrogate and the output of the initial model based on
the x_train set given.






	
explain_local(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], n_cols: Optional[int] = None) → List[Dict[str, float]]

	returns local relative importance of features for a specific observation.
:param x_explain: the dataset to explain on
:param n_cols: the maximum number of features to return






	
feature_importance(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], n_cols: Optional[int] = None) → Dict[str, float]

	returns a relative importance of each feature globally as a dict.
:param x_explain: the dataset to explain on
:param n_cols: the maximum number of features to return






	
fit(model: sklearn.base.BaseEstimator, x_train: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], y_train: pandas.core.frame.DataFrame)

	prepares the explainer by saving all the information it needs and fitting necessary models


	Parameters

	
	model – the TRAINED model the explainer will need to shed light on


	x_train – the dataset the model was trained on originally


	y_train – the target the model was trained on originally













	
plot_tree(out_path: str = './tree_viz')

	returns the colored plot of the decision tree and saves an Image in the wd.












trelawney.tree_explainer module

Module that provides the TreeExplainer class base on the Baseexplainer class


	
class trelawney.tree_explainer.TreeExplainer(class_names: Optional[List[str]] = None)

	Bases: trelawney.base_explainer.BaseExplainer

The TreeExplainer class is composed of 4 methods:
- fit: get the right model
- feature_importance (global interpretation)
- explain_local (local interpretation, WIP)
- plot_tree (full tree visualisation)


	
explain_local(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], n_cols: Optional[int] = None) → List[Dict[str, float]]

	returns local relative importance of features for a specific observation.
:param x_explain: the dataset to explain on
:param n_cols: the maximum number of features to return






	
feature_importance(x_explain: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], n_cols: Optional[int] = None) → Dict[str, float]

	returns a relative importance of each feature globally as a dict.
:param x_explain: the dataset to explain on
:param n_cols: the maximum number of features to return






	
fit(model: sklearn.base.BaseEstimator, x_train: Union[pandas.core.series.Series, pandas.core.frame.DataFrame, numpy.ndarray], y_train: pandas.core.frame.DataFrame)

	prepares the explainer by saving all the information it needs and fitting necessary models


	Parameters

	
	model – the TRAINED model the explainer will need to shed light on


	x_train – the dataset the model was trained on originally


	y_train – the target the model was trained on originally













	
plot_tree(out_path: str = './tree_viz')

	creates a png file of the tree saved in out_path


	Parameters

	out_path – the path to save the png representation of the tree to
















trelawney.trelawney module




Module contents

Top-level package for trelawney.







          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/skanderkam/trelawney/issues.

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.




Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.




Write Documentation

trelawney could always use more documentation, whether as part of the
official trelawney docs, in docstrings, or even on the web in blog posts,
articles, and such.




Submit Feedback

The best way to send feedback is to file an issue at https://github.com/skanderkam/trelawney/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that contributions
are welcome :)









Get Started!

Ready to contribute? Here’s how to set up trelawney for local development.


	Fork the trelawney repo on GitHub.


	Clone your fork locally:

$ git clone git@github.com:your_name_here/trelawney.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv trelawney
$ cd trelawney/
$ python setup.py develop







	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 trelawney tests
$ python setup.py test or pytest
$ tox





To get flake8 and tox, just pip install them into your virtualenv.



	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.







Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.


	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.


	The pull request should work for Python 3.5, 3.6 and 3.7, and for PyPy. Check
https://travis-ci.org/skanderkam/trelawney/pull_requests
and make sure that the tests pass for all supported Python versions.







Tips

To run a subset of tests:

$ pytest tests.test_trelawney








Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags





Travis will then deploy to PyPI if tests pass.
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History


0.1.0 (2019-10-02)


	First release on PyPI.
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Trelawney will try to provide you with two kind of explanation when possible:


	global explanation of the model that highlights the most importance features the model uses to make its
predictions globally


	local explanation of the model that will try to shed light on why a specific model made a specific prediction




The Trelawney package is build around:


	
	some model specific explainers that use the inner workings of some types of models to explain them:

	
	LogRegExplainer that uses the weights of the your logistic regression to produce global and local explanations of
your model


	TreeExplainer that uses the path of your tree (single tree model only) to produce explanations of the model










	
	Some model agnostic explainers that should work with all models:

	
	LimeExplainer that uses the Lime [https://github.com/marcotcr/lime] package to create local explanations only (the local nature of Lime prohibits
it from generating global explanations of a model


	ShapExplainer that uses the SHAP [https://github.com/slundberg/shap] package to create local and global explanations of your model


	SurrogateExplainer that creates a general surogate of your model (fitted on the output of your model) using an
explainable model (DecisionTreeClassifier,`LogisticRegression` for now). The explainer will then use the
internals of the surrogate model to explain your black box model as well as informing you on how well the surrogate
model explains the black box one













Quick Tutorial (30s to Trelawney):

Here is an example of how to use a Trelawney explainer

>>> model = LogisticRegression().fit(X, y)
>>> # creating and fiting the explainer
>>> explainer = ShapExplainer()
>>> explainer.fit(model, X, y)
>>> # explaining observation
>>> explanation =  explainer.explain_local(X_expain)
[
    {'var_1': 0.1, 'var_2': -0.07, ...},
    ...
    {'var_1': 0.23, 'var_2': -0.15, ...} ,
]
>>> explanation =  explainer.graph_local_explanation(X_expain.iloc[:1, :])





[image: Local Explanation Graph]
>>> explanation =  explainer.feature_importance(X_expain)
{'var_1': 0.5, 'var_2': 0.2, ...} ,
>>> explanation =  explainer.graph_feature_importance(X_expain)





[image: Local Explanation Graph]



FAQ


Why should I use Trelawney rather than Lime [https://github.com/marcotcr/lime] and SHAP [https://github.com/slundberg/shap]




while you can definitally use the Lime and SHAP packages directly (they will give you more control over how to use their
packages), they are very specialized packages with different APIs, graphs and vocabulary. Trelawnaey offers you a
unified API, representation and vocabulary for all state of the art explanation methods so that you don’t lose time
adapting to each new method but just change a class and Trelawney will adapt to you.




Comming Soon


	Regressor Support (PR welcome)


	Image and text Support (PR welcome)







Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.







          

      

      

    

  

    
      
          
            
  
Usage

To use trelawney in a project:

import trelawney
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